323. Molecular Polarisability. The Molar Kerr Constants of 2,2'-Bipyridyl and 1,10-Phenanthroline.

By (Miss) P. H. Cureton, (Mrs.) C. G. Le Fèvre, and R. J. W. Le Fèvre.
The dipole moments and molar Kerr constants of 2,2'-bipyridyl and 1,10phenanthroline are consistent with an equivalent conformation for the former molecule, as a solute in benzene or carbon tetrachloride, with the pyridyl rings twisted about the $4,4^{\prime}$-axis by $10-17^{\circ}$ from the flat trans-arrangement reported to exist in the crystal.

Goethals, ${ }^{1}$ Fielding and Le Fèvre, ${ }^{2}$ Goethals and Wibaut, ${ }^{3}$ and Cumper, Ginman, and Vogel ${ }^{4}$ have reported the dipole moment in benzene of $2,2^{\prime}$-bipyridyl as small, consistently with a near-trans-conformation for this solute, and with expectations based on Cagle's X-ray analysis ${ }^{5}$ of the crystalline substance. The actual values given for $\mu_{\text {bipy }}$ have varied somewhat with the distortion polarisations assumed; the R_{D} now found (cf. Table 1) is $49 \cdot 3$ c.c., to be compared with 46.0 c.c. (ref. 2), $49 \cdot 4$ c.c. (ref. 4), or $49 \cdot 1_{5}$ c.c. (ref. 4). In carbon tetrachloride (Tables 1 and 2 below) μ appears as 0.61 D , which is close to that (0.69 D) recorded by Vogel et al. ${ }^{4}$ in benzene. Goethals and Wibaut's results suggest that $\mu_{\text {bipy }}$ may increase slightly with rise of temperature. In contrast, the polarity of 1,10 -phenanthroline (regarded as a rough model of the unknown cis-2,2'-bipyridyl) is ${ }^{2,4}$ not below 3.6 D . By the argument of Fielding and Le Fèvre, who used the moment of pyridine, ${ }^{6,7}$ a $\mu_{\text {bipy }}$ of ca. 0.6 D should correspond to an azimuthal angle χ° (through which the $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}$ nuclei are twisted about the common axis) of $162-163^{\circ}$.

As the semi-axes of the polarisability ellipsoid for pyridine are now available, it is of interest to check the above conclusions by comparing the molar Kerr constants determined by experiment with those expected for different values of χ. This is the main subject of the present paper. Methods of calculation have been explained previously, ${ }^{8-10}$ a worked example being set out in ref. 10 .

Experimental

Solutes.-2,2'-Bipyridyl, purified by sublimation at 0.25 mm ., had m. p. $70-71^{\circ}$ (Wibaut and Willink ${ }^{11}$ give 70.5°); 1,10-phenanthroline monohydrate was heated to 80° in a phosphorus pentoxide-containing evacuated drying-pistol, then recrystallised from sodium-dried benzene and stored over sulphuric acid; the product had m. p. 116-117 ${ }^{\circ}$ (Beilstein's "Handbuch der organischen Chemie," Vol. XXIII, p. 227, cites 117° for the anhydrous base).

Techniques, Apparatus, etc.—Details have been as described in refs. $8 a$, p. 274, or $8 b$, p. 2462. Measurements and results are recorded in Tables 1 and 2, under the usual headings (cf. ref. 12 for a recent listing in this Journal of these and other symbols). Benzene and carbon tetrachloride as solvents were of "AnalaR" grade; after drying (Na and CaCl_{2}, respectively) they

[^0]Table 1.
Increments in Kerr constant, refractive index, etc., for solutions in benzene or carbon tetrachloride containing weight fractions w_{2} of $2,2^{\prime}$-bipyridyl or 1,10 -phenanthroline.

whence $10^{7} \Delta B=0.809 w_{2}+39 w_{-}, \Sigma \Delta n / \Sigma w_{2}{ }^{2}=0.239, \Sigma \Delta d / \Sigma w_{2}=-0.559_{6}$, and $\Sigma \Delta \varepsilon / \Sigma w_{2}=1 \cdot 24_{3}$.
Phenanthroline in benzene.

Phenanthroline in benzene.										
$10^{6} w_{2} \ldots$	3944	5646	6028	6266	7401	7885	9245	9694	10,827	11,187
$10^{10} \Delta B \ldots$	75	94	110	102	129	130	169	167	195	201
$10^{4} \Delta n$	7	-	10	-	-	14	-	17	-	20
$10^{6} w_{2} \quad \ldots$	4964	6166	8922							
$10^{4} \Delta \varepsilon \quad .$.	463	558	830							

whence $\Sigma \Delta B / \Sigma w_{2}=17 \cdot 56 ; \Sigma \Delta n / \Sigma w_{2}=0 \cdot 173$; and $\Sigma \Delta \varepsilon / \Sigma w_{2}=9 \cdot 23_{1}$.

* $\Delta B=c a .0$ for w_{2} 's up to about 0.03 .

Table 2.
Molar Kerr constants from data of Table 1 and ref. 2.

* From ref. 2. $\dagger_{\infty} P_{2}$ from the $\alpha \varepsilon_{1}$ and β shown is 59.3 c.c. With $1 \cdot 05 R_{\mathrm{D}}={ }_{\mathrm{D}} P=51.8$ c.c., $\mu=0.61 \mathrm{D}$. \ddagger The re-measurement of ε_{12} for phenanthroline solutions is reported because in ref. 2 the individual $\alpha \varepsilon_{1}$'s are not constant. With $\alpha \varepsilon_{1}=9 \cdot 23,{ }_{\infty} P_{2}$ is $354 \cdot 4_{5}$ c.c. The refractions in Table 1 correspond to $R_{\mathrm{D}}=58.7$ c.c., whence, with ${ }_{\mathrm{D}} P=1 \cdot 05 R_{\mathrm{D}}, \mu=3 \cdot 7_{8} \mathrm{D}$. Vogel et al. ${ }^{4}$ quote $R_{\mathrm{D}}=60.02$ c.c. and $\mu=3.64 \mathrm{D}$.

Table 3.

Semi-axes of the molecular polarisability ellipsoid of $2,2^{\prime}$-bipyridyl and calculated molar Kerr constants in dependence on χ.

Angle	Semi-axes	OX	$O Y$	$O Z$	$\mu_{\text {rea }}$	$10^{12}{ }_{\mathrm{m}} K$ (calc.)
0°	$\int b_{1}=2.356$	1	0	0		
	$b_{2}=1.189$	0	0	1	$\mu_{3}=3.90$	$+477$
	$b_{3}=2.024$	0	1	0		
90°	$\int b_{1}=2.356$	0.9997	0.0173	0.0173		
	$b_{2}=1.606$	-0.0245	$0 \cdot 7069$	0.7069	$\mu_{3}=2.76$	-286
	$b_{3}=1.606_{5}$	0	-0.7071	0.7071		
158°	\{ $b_{1}=2 \cdot 358$	0.9976	0.0686	0.0133		
	$b_{2}=1.992$	-0.0699	0.9792	$0 \cdot 1903$	$\mu_{3}=0.74$	$-7 \cdot 7$
	$b_{3}=1.219$	0	-0.1908	0.9816		
160°	$b_{1}=2.358$	0.9975	0.0700	0.0123		
	$b_{2}=1.997$	-0.0711	0.9823	$0 \cdot 1732$	$\mu_{3}=0.68$	$+2.5$
	$b_{3}=1.214$	0	-0.17365	0.9848		
163°	$\left\{b_{1}=2 \cdot 358\right.$	$0.9973{ }_{5}$	0.0720	$0 \cdot 0108$		
	$\left\{b_{2}=2.004\right.$	-0.0728	0.9864	$0 \cdot 1474$	$\mu_{3}=0.58$	$+16.4$
	$b_{3}=1.207$	0	-0.1478	0.9890		
170°	\} $b_{1}=2.358$	0.9971	0.0755	$0 \cdot 0066$		
	$b_{2}=2.016$	-0.0758	0.9933	0.0869	$\mu_{3}=0.34$	$+40 \cdot 9$
	$b_{3}=1.195$	0	-0.0872	$0 \cdot 9962$		
180°	$\int b_{1}=2.358$	0.9970	0.0775_{5}	0		
	$\left\{\begin{array}{l}b_{2}=2 \cdot 022 \\ b_{3}=1 \cdot 189\end{array}\right.$	-0.0775_{5} 0	0.9970 0	0 1	$\mu_{3}=0$	+54.3

were fractionated, and stored over the desiccants named. When $w_{2}=0$, the following values apply at 25° (and, where appropriate, for sodium-d light):

		$10^{7} B_{\mathrm{D}}$	n_{D}	ε	d	H	J
$\mathrm{C}_{6} \mathrm{H}_{6} \ldots \ldots \ldots \ldots \ldots$	0.410	1.4973	2.2725	0.8738	2.114	0.4681	$10^{14}{ }_{8} K_{1}$
$\mathrm{CCl}_{4} \ldots \ldots \ldots \ldots \ldots$	0.070	1.4575	2.2270	1.5845	2.060	0.4731	0.749

Discussion

Conformation of 2, 2^{\prime}-Bipyridyl.-From the measurements recorded by Le Fèvre, Le Fèvre, Rao, and Smith, ${ }^{7}$ the principal polarisabilities * of each pyridyl unit are $b_{1}=$ $1.006, b_{2}=0.976$, and $b_{3}=0.581$, with b_{1} along the 4,1 -direction and b_{3} perpendicular to the $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$ plane. By assuming all intervalency angles to be 120° (cf. Cagle ${ }^{5}$) and using normal $\mathrm{C}-\mathrm{C}$ polarisabilities, ${ }^{8,9}$ semi-axes of the molecular ellipsoid of $2,2^{\prime}$-bipyridyl can be calculated ${ }^{8-10}$ for various values of χ as in Table 3. If $b_{1}+b_{2}+b_{3}=5.569$ (from ${ }_{\mathrm{E}} P=0.95 R_{\mathrm{D}}$), then a small exaltation, $\Delta b=5.569-2 \Sigma b^{\mathrm{C}_{\mathrm{t}} \mathrm{H}_{\mathrm{A}} \mathrm{N}}-\Sigma b^{\mathrm{C}-\mathrm{C}}=0.29$, is apparent; we apply this parallel to the $1,1^{\prime}$-bond (cf. analogy with biphenyl ${ }^{13}$).

Arbitrary axes $O X, O Y$, and $O Z$ are located in one pyridyl ring as in (I) with the positive sense of $O Z$ up from the plane of the paper. Since in the crystal the molecule

(I)

is trans, and in many co-ordination complexes is presumably cis, we include calculations to cover these extremes ($\chi=180^{\circ}$ or 0°, respectively) and their orthogonal intermediate ($x=90^{\circ}$).

From the two right-hand columns of Table 3 it is clear that single conformations with χ between 160° and 163° would account for both the μ observed and the ${ }_{m} K$ observed. In reality, however (remembering the evident ease of the trans \longrightarrow cis-inversion which must occur during chelation of this base to metals), the bipyridyl molecules are probably in vibration about an unknown equilibrium configuration (so that part of the apparent polarity may be due to " vibration polarisation" as described for other cases by Coop and Sutton ${ }^{14}$). This configuration seems unlikely to be the flat trans-form because then x's around 180° would be most preferred and m 's of $40-50 \times 10^{-12}$ should follow. (Since the anisotropy term θ_{1} for pyridine is $c a .1-2$ times that for benzene, the ${ }_{m} K$ for bipyridyl with $\chi=180^{\circ}$ can reasonably be expected to exceed the ${ }_{\mathrm{m}} K=40.5 \times 10^{-12}$ measured ${ }^{13}$ for biphenyl; the calculated value of $+54.3 \times 10^{-12}$ in Table 3 is thus credible.) The ${ }_{\infty}\left({ }_{m} K_{2}\right)$'s recorded in Table 2 for bipyridyl being only $4-14 \times 10^{-12}$, the weighted mean χ. must be such as to produce a negative θ_{2} term. [The solute species therefore behaves (cf. p. 294 of ref. $8 a$) as though it possessed a finite resultant dipole

[^1]moment.] Accordingly we propose (I) with $\chi=160-163^{\circ}$ as the "equivalent" conformation of dissolved $2,2^{\prime}$-bipyridyl, meaning thereby a specifiable single conformation from which observable quantities can be calculated a priori even if in fact these observables are drawn from an assemblage of conformations with χ 's varying about an undetermined χ equilibrium.

The Molar Constant of 1,10-Phenanthroline.-The measurements on this solute were intended as checks of our predictions of μ and ${ }_{m} K$ for the unknown cis-2,2'-bipyridyl. By using $\mu_{\text {prridine }}$ as before, $\mu_{\text {resultant }}$ for (II) is calculated as 3.9 D , in satisfactory accord with $3 \cdot 7_{8} \mathrm{D}$ from experiment. Tensorial additions of the anisotropic polarisabilities of two $\mathrm{C}-\mathrm{C}$ bonds and one $\mathrm{C}=\mathrm{C}$ bond ${ }^{8,15}$ to the molecular semi-axes of bipyridyl with $\chi=0^{\circ}$, yields for (II), if intervalency angles are all $120^{\circ}, b_{1}=2 \cdot 436, b_{2}=1 \cdot 320$, and $b_{3}=2.259$. These semi-axes produce an $\mathrm{m} K$ calc. of 655×10^{-12}, and their sum corresponds to an electronic polarisation ${ }_{\mathrm{E}} P$ of 50.58 c.c. (Tables 1 and 2); but when calculated (from R_{D} pyridine $=24.07$ c.c., $R_{\mathrm{D}}{ }^{\mathrm{O}-\mathrm{C}}=1.296, R_{\mathrm{D}}{ }^{\mathrm{C}=\mathrm{C}}=4.17$, and $R_{\mathrm{D}}{ }^{\mathrm{C}-\mathrm{H}}=1.676$ c.c.) ${ }_{\mathrm{E}} P$ is 52.85 c.c.; an exaltation $\Delta R_{\mathrm{v}}=5.85$ c.c. is evidently present. On the basis that ${ }_{\mathrm{E}} P=$ $0.95 R_{\mathfrak{p}}$, the polarisability exaltation, Δb, emerges as 0.661 . This must be distributed between the b_{1}, and b_{3} just given for (II). When it is added wholly to $b_{1},{ }_{\mathrm{m}} K$ calc. becomes 201×10^{-12} (which is too small); if added equally to b_{1} and b_{3} the ${ }_{\mathrm{m}} K$ calc. becomes 982×10^{-12} (which is too great). By trial and error, division of Δb over b_{1} and b_{3} in the proportions of $3.5: 1$ produces $b_{1}=2.950, b_{2}=1.320, b_{3}=2.406$, and ${ }_{\mathrm{m}} K$ calc. $=$ $531 \times 10^{-12}\left(\mathrm{cf} .{ }_{\mathrm{m}} K\right.$ observed $\left.=532 \times 10^{-12}\right)$. This finding is qualitatively explicable since in structure (II) conjugation involving the $-\mathrm{CH}=\mathrm{CH}$ - unit bridging the 1,10 -positions must compete with the $4,1,1^{\prime}, 4^{\prime}$-conjugation of bipyridyl; if the exaltation of polarisability is regarded as due to π-electron interactions from the two outer to the central ring, augmentation of b_{3} and b_{1} in a ratio near $\sin ^{2} 60^{\circ}: \cos ^{2} 60^{\circ}$ is not unexpected.

University of Sydney, N.S.W., Australia.
[Received, August 14th, 1962.
${ }^{15}$ Bramley, Le Fèvre, Le Fèvre, and Rao, J., 1959, 1183.

[^0]: ${ }^{1}$ Goethals, Rec. Trav. chim., 1935, 54, 299.
 ${ }^{2}$ Fielding and Le Fèvre, J., 1951, 1813.
 ${ }^{3}$ Goethals and Wibaut, Rec. Trav. chim., 1954, 73, 35.
 ${ }^{4}$ Cumper, Ginman, and Vogel, J., 1962, 1188.
 ${ }^{5}$ Cagle, Acta Cryst., 1948, 1, 158.
 ${ }^{6}$ Buckingham, Chau, Freeman, Le Fèvre, Rao, and Tardif, J., 1956, 1405.
 7 Le Fèvre, Le Fèvre, Rao, and Smith, J., 1959, 1188.
 ${ }^{8}$ Le Fèvre and Le Fèvre, (a) Rev. Pure Appl. Chem., 1955, 5, 261; (b) Chap. XXXVI in "Physical Methods of Organic Chemistry," ed. Weissberger, Interscience Publ. Inc., New York, 3rd edn., Vol. I, p. 2459.
 ${ }^{9}$ Le Fèvre, J. Proc. Roy. Soc. New South Wales, 1961, 95, 1.
 ${ }^{10}$ Eckert and Le Fèvre, J., 1962, 1081.
 ${ }^{11}$ Wibaut and Willink, Rec. Trav. chim., 1931, 50, 287.
 12 Le Fèvre and Sundaram, J., 1962, 1494.

[^1]: * Principal polarisabilities of molecules (b_{1}, b_{2}, and b_{3}) or of bonds (b_{1}, b_{T}, and b_{V}) are quoted throughout in 10^{-23} c.c. units.
 ${ }^{13}$ Chau, Le Fèvre, and Le Fèvre, J., 1959, 2666.
 ${ }^{14}$ Coop and Sutton, J., 1938, 1269; cf. Sutton, Ann. Reports, 1940, 37, 62.

