323. Molecular Polarisability. The Molar Kerr Constants of 2,2'-Bipyridyl and 1,10-Phenanthroline.

By (MISS) P. H. CURETON, (MRS.) C. G. LE FÈVRE, and R. J. W. LE FÈVRE.

The dipole moments and molar Kerr constants of 2,2'-bipyridyl and 1,10phenanthroline are consistent with an equivalent conformation for the former molecule, as a solute in benzene or carbon tetrachloride, with the pyridyl rings twisted about the 4,4'-axis by 10-17° from the flat trans-arrangement reported to exist in the crystal.

GOETHALS,¹ Fielding and Le Fèvre,² Goethals and Wibaut,³ and Cumper, Ginman, and Vogel⁴ have reported the dipole moment in benzene of 2,2'-bipyridyl as small, consistently with a near-trans-conformation for this solute, and with expectations based on Cagle's X-ray analysis⁵ of the crystalline substance. The actual values given for μ_{bipy} have varied somewhat with the distortion polarisations assumed; the $R_{\rm p}$ now found (cf. Table 1) is 49.3 c.c., to be compared with 46.0 c.c. (ref. 2), 49.4 c.c. (ref. 4), or 49.1_5 c.c. (ref. 4). In carbon tetrachloride (Tables 1 and 2 below) μ appears as 0.61 p, which is close to that (0.69 D) recorded by Vogel *et al.*⁴ in benzene. Goethals and Wibaut's results suggest that μ_{bipy} may increase slightly with rise of temperature. In contrast, the polarity of 1,10-phenanthroline (regarded as a rough model of the unknown cis-2,2'-bipyridyl) is 2,4 not below 3.6 D. By the argument of Fielding and Le Fèvre, who used the moment of pyridine,^{6,7} a μ_{bipy} of *ca*. 0.6 D should correspond to an azimuthal angle χ° (through which the C₆H₄N nuclei are twisted about the common axis) of 162–163°.

As the semi-axes of the polarisability ellipsoid for pyridine are now available, it is of interest to check the above conclusions by comparing the molar Kerr constants determined by experiment with those expected for different values of χ . This is the main subject of the present paper. Methods of calculation have been explained previously,⁸⁻¹⁰ a worked example being set out in ref. 10.

EXPERIMENTAL

Solutes.-2,2'-Bipyridyl, purified by sublimation at 0.25 mm., had m. p. 70-71° (Wibaut and Willink ¹¹ give 70.5° ; 1,10-phenanthroline monohydrate was heated to 80° in a phosphorus pentoxide-containing evacuated drying-pistol, then recrystallised from sodium-dried benzene and stored over sulphuric acid; the product had m. p. 116-117° (Beilstein's "Handbuch der organischen Chemie," Vol. XXIII, p. 227, cites 117° for the anhydrous base).

Techniques, Apparatus, etc.-Details have been as described in refs. 8a, p. 274, or 8b, p. 2462. Measurements and results are recorded in Tables 1 and 2, under the usual headings (cf. ref. 12 for a recent listing in this *Journal* of these and other symbols). Benzene and carbon tetrachloride as solvents were of "AnalaR" grade; after drying (Na and CaCl₂, respectively) they

- ¹ Goethals, Rec. Trav. chim., 1935, 54, 299.
- ² Fielding and Le Fèvre, J., 1951, 1813.
 ³ Goethals and Wibaut, *Rec. Trav. chim.*, 1954, 73, 35.
 ⁴ Cumper, Ginman, and Vogel, J., 1962, 1188.
- ⁵ Cagle, Acta Cryst., 1948, 1, 158.

- Eckert and Le Fèvre, J., 1962, 1081.
 Wibaut and Willink, Rec. Trav. chim., 1931, 50, 287.
- ¹² Le Fèvre and Sundaram, *J.*, 1962, 1494.

⁶ Buckingham, Chau, Freeman, Le Fèvre, Rao, and Tardif, J., 1956, 1405.
⁷ Le Fèvre, Le Fèvre, Rao, and Smith, J., 1959, 1188.
⁸ Le Fèvre and Le Fèvre, (a) Rev. Pure Appl. Chem., 1955, 5, 261; (b) Chap. XXXVI in "Physical Methods of Organic Chemistry," ed. Weissberger, Interscience Publ. Inc., New York, 3rd edn., Vol. I, p. 2459. * Le Fèvre, J. Proc. Roy. Soc. New South Wales, 1961, 95, 1. * Le Fèvre, J. Proc. Roy. 1962, 1081.

TABLE 1.

Increments in Kerr constant, refractive index, etc., for solutions in benzene or carbon tetrachloride containing weight fractions w_2 of 2,2'-bipyridyl or 1,10-phenanthroline.

				Bipyri	dyl in ben	zene. =				
10 ⁵ w		998		1065	11	75	1266	156	0	2026
$10^{4}\Delta n$		10		10		11	12	1	5	20
			•	whence	$\Sigma \Delta n / \Sigma w_2$	= 0.096.				
			Bipy	ridyl in	carbon tet	rachloride.				
$10^5 w_2$		367	4	31	663	1035	1194		1814	2336
$10^{10} \Delta B \dots$		3		5	7	_	15		<u> </u>	40
$10^{4}\Delta n$		_		10		26	29		44	54
$-10^{4}\Delta d$						58	67		101	131
104Δε					<u> </u>	126	148		229	290
whence $10^7\Delta$	B = 0.80	$9w_2 + 39$	w-, ΣΔ	$n/\Sigma w_2^2$	= 0.239,	$\Sigma \Delta d / \Sigma w_2 =$	± −0.559	, and 2	$\Sigma \Delta \epsilon / \Sigma w_2 =$	= 1·24 ₃ .
			1	Phenanth	hroline in	benzene.				
10 ⁶ w,	3944	5646	3028	6266	7401	7885	9245	9694	10,827	11,187
10¹⁰Δ́ <i>B</i>	75	94	110	102	129	130	169	167	195	201
$10^4\Delta n$	7	—	10		—	14		17		20
10 ⁶ w	4964	6166	3922							
104Δε	463	558	830							

whence $\Sigma \Delta B / \Sigma w_2 = 17.56$; $\Sigma \Delta n / \Sigma w_2 = 0.173$; and $\Sigma \Delta \varepsilon / \Sigma w_2 = 9.23_1$.

* $\Delta B = ca. 0$ for w_2 's up to about 0.03.

TABLE 2.

Molar Kerr constants from data of Table 1 and ref. 2.

	Solvent	αε1	β	γ	δ	$10^{12} (mK_2)$
2,2'-Bipyridy1	C ₆ H ₆	0·72 ₉ *	0.221 *	0.064	ca. 0	4·3 ₈
,,	CCl ₄ †	1.243	-0.353	0.164	11.2_{4}	13.8
1,10-Phenanthroline	C ₆ H ₆	$9.23 \ddagger$	0.322_{5}	0·115 ₅	$42 \cdot 8_{3}$	$532 \cdot 1$

* From ref. 2. $\dagger_{\infty}P_2$ from the $\alpha \varepsilon_1$ and β shown is 59.3 c.c. With $1.05R_D = {}_DP = 51.8$ c.c., $\mu = 0.61D$. \ddagger The re-measurement of ε_{12} for phenanthroline solutions is reported because in ref. 2 the individual $\alpha \varepsilon_1$'s are not constant. With $\alpha \varepsilon_1 = 9.23$, ${}_{\infty}P_2$ is 354.4_5 c.c. The refractions in Table 1 correspond to $R_D = 58.7$ c.c., whence, with ${}_DP = 1.05R_D$, $\mu = 3.7_8D$. Vogel *et al.*⁴ quote $R_D = 60.02$ c.c. and $\mu = 3.64D$.

Table	3.
-------	----

Semi-axes of the molecular polarisability ellipsoid of 2,2'-bipyridyl and calculated molar Kerr constants in dependence on χ .

		Dir	ection cosines	with		
Angle	Semi-axes	OX	OY	OZ	μ_{res}	$10^{12} MK$ (calc.)
	$(b_1 = 2.356)$	1	0	0)	
0°	$\begin{cases} b_2 = 1.189 \end{cases}$	0	0	1	$\mu_{3} = 3.90$	+477
	$b_{a} = 2.024$	0	1	0]	
	$b_1 = 2.356$	0.9997	0.0173	0.0173	Ĵ	
9 0°	$b_{2} = 1.606$	-0.0245	0.7069	0.7069	$\mu_3 = 2.76$	-286
	$b_{3} = 1.606_{5}$	0	-0.7071	0.7071]	
	$b_1 = 2.358$	0.9976	0.0686	0·0133	Ĵ	
158°	$\begin{cases} b_2 = 1.992 \end{cases}$	-0.0699	0.9792	0.1903	$\mu_{3} = 0.74$	-7.7
	$b_{3} = 1.219$	0	-0.1908	0.9816		
	$b_1 = 2.358$	0.9975	0.0700	0.0123	Ì	
160°	$b_{2} = 1.997$	-0.0711	0.9823	0.1732	$\mu_{1} = 0.68$	$+2.5_{5}$
	$b_{3} = 1.214$	0	-0.1736_{5}	0.9848		•
	$b_1 = 2.358$	0.9973_{5}	0.0720	0.0108	Ĵ	
163°	$b_{2} = 2.004$	-0.0728	0.9864	0.1474	$\mu_{0} = 0.58$	+16.4
	$b_{3} = 1.207$	0	-0.1478	0.9890	1	
	$b_1 = 2.358$	0.9971	0.0755	0.0066	ĺ	
170°	$b_{2} = 2.016$	-0.0758	0·9933	0.0869	$\mu_{1} = 0.34$	+40.9
	$b_{3} = 1.195$	0	-0.0872	0.9962	}	•
	$b_1 = 2.358$	0.9970	0.0775_{5}	0	ì	
180°	$b_{2} = 2.022$	-0.0775_{5}	0·9970 [°]	0	$\lambda \mu_n = 0$	+ 54.3
	$b_{3} = 1.189$	0 ້	0	1	J	

were fractionated, and stored over the desiccants named. When $w_2 = 0$, the following values apply at 25° (and, where appropriate, for sodium-D light):

	$10^7 B_{\rm D}$	n_{D}	ε	d	H	J	$10^{14} K_{1}$
C ₆ H ₆ CCl ₄	0·410 0·070	$1.4973 \\ 1.4575$	$2 \cdot 2725 \\ 2 \cdot 2270$	$0.8738 \\ 1.5845$	$2.114 \\ 2.060$	0·4681 0·4731	7·56 0·749

DISCUSSION

Conformation of 2,2'-Bipyridyl.—From the measurements recorded by Le Fèvre, Le Fèvre, Rao, and Smith,⁷ the principal polarisabilities * of each pyridyl unit are $b_1 = 1.006$, $b_2 = 0.976$, and $b_3 = 0.581$, with b_1 along the 4,1-direction and b_3 perpendicular to the C_5H_4N plane. By assuming all intervalency angles to be 120° (cf. Cagle ⁵) and using normal C-C polarisabilities,^{8,9} semi-axes of the molecular ellipsoid of 2,2'-bipyridyl can be calculated ⁸⁻¹⁰ for various values of χ as in Table 3. If $b_1 + b_2 + b_3 = 5.569$ (from $_{\rm E}P = 0.95R_{\rm p}$), then a small exaltation, $\Delta b = 5.569 - 2\Sigma b^{C_1H_4N} - \Sigma b^{C-O} = 0.29$, is apparent; we apply this parallel to the 1,1'-bond (cf. analogy with biphenyl¹³).

Arbitrary axes OX, OY, and OZ are located in one pyridyl ring as in (I) with the positive sense of OZ up from the plane of the paper. Since in the crystal the molecule

is *trans*, and in many co-ordination complexes is presumably *cis*, we include calculations to cover these extremes ($\chi = 180^{\circ}$ or 0° , respectively) and their orthogonal intermediate ($\chi = 90^{\circ}$).

From the two right-hand columns of Table 3 it is clear that single conformations with χ between 160° and 163° would account for both the μ observed and the $_{m}K$ observed. In reality, however (remembering the evident ease of the *trans* \longrightarrow *cis*-inversion which must occur during chelation of this base to metals), the bipyridyl molecules are probably in vibration about an unknown equilibrium configuration (so that part of the apparent polarity may be due to "vibration polarisation" as described for other cases by Coop and Sutton ¹⁴). This configuration seems unlikely to be the flat *trans*-form because then χ 's around 180° would be most preferred and $_{m}K$'s of 40—50 × 10⁻¹² should follow. (Since the anisotropy term θ_1 for pyridine is *ca.* 1·2 times that for benzene, the $_{m}K$ for bipyridyl with $\chi = 180^\circ$ can reasonably be expected to exceed the $_{m}K = 40.5 \times 10^{-12}$ measured ¹³ for biphenyl; the calculated value of $+54\cdot3 \times 10^{-12}$ in Table 3 is thus credible.) The $_{\infty}(_{m}K_2)$'s recorded in Table 2 for bipyridyl being only 4—14 $\times 10^{-12}$, the weighted mean χ must be such as to produce a negative θ_2 term. [The solute species therefore behaves (cf. p. 294 of ref. 8*a*) as though it possessed a finite resultant dipole

^{*} Principal polarisabilities of molecules $(b_1, b_2, \text{ and } b_3)$ or of bonds $(b_L, b_T, \text{ and } b_V)$ are quoted throughout in 10^{-23} c.c. units.

¹³ Chau, Le Fèvre, and Le Fèvre, J., 1959, 2666.

¹⁴ Coop and Sutton, J., 1938, 1269; cf. Sutton, Ann. Reports, 1940, 37, 62.

moment.] Accordingly we propose (I) with $\chi = 160-163^{\circ}$ as the "equivalent" conformation of dissolved 2,2'-bipyridyl, meaning thereby a specifiable single conformation from which observable quantities can be calculated *a priori* even if in fact these observables are drawn from an assemblage of conformations with χ 's varying about an undetermined Xequilibrium.

The Molar Constant of 1,10-Phenanthroline.—The measurements on this solute were intended as checks of our predictions of μ and $_{m}K$ for the unknown cis-2,2'-bipyridyl. By using $\mu_{pyridine}$ as before, $\mu_{resultant}$ for (II) is calculated as 3.9 D, in satisfactory accord with 3.7_8 D from experiment. Tensorial additions of the anisotropic polarisabilities of two C-C bonds and one C=C bond 8,15 to the molecular semi-axes of bipyridyl with $\chi = 0^{\circ}$, yields for (II), if intervalency angles are all 120°, $b_1 = 2.436$, $b_2 = 1.320$, and $b_3 = 2.259$. These semi-axes produce an mK calc. of 655×10^{-12} , and their sum corresponds to an electronic polarisation $_{\rm E}P$ of 50.58 c.c. (Tables 1 and 2); but when calculated (from $R_{\rm p}^{\rm pyridine} = 24.07$ c.c., $R_{\rm p}^{\rm C-O} = 1.296$, $R_{\rm p}^{\rm C=C} = 4.17$, and $R_{\rm p}^{\rm C-H} = 1.676$ c.c.) $_{\rm E}P$ is 52.85 c.c.; an exaltation $\Delta R_{\rm p} = 5.85$ c.c. is evidently present. On the basis that $_{\rm E}P =$ $0.95R_{\rm p}$, the polarisability exaltation, Δb , emerges as 0.661. This must be distributed between the b_1 , and b_3 just given for (II). When it is added wholly to b_1 , mK calc. becomes 201×10^{-12} (which is too small); if added equally to b_1 and b_3 the mK calc. becomes 982×10^{-12} (which is too great). By trial and error, division of Δb over b_1 and b_3 in the proportions of 3.5:1 produces $b_1 = 2.950$, $b_2 = 1.320$, $b_3 = 2.406$, and $_{\rm m}K$ calc. = 531×10^{-12} (cf. $_{\rm m}K$ observed = 532×10^{-12}). This finding is qualitatively explicable since in structure (II) conjugation involving the -CH=CH- unit bridging the 1,10-positions must compete with the 4,1,1',4'-conjugation of bipyridyl; if the exaltation of polarisability is regarded as due to π -electron interactions from the two outer to the central ring, augmentation of b_3 and b_1 in a ratio near $\sin^2 60^\circ : \cos^2 60^\circ$ is not unexpected.

UNIVERSITY OF SYDNEY, N.S.W., AUSTRALIA.

[Received, August 14th, 1962.

¹⁵ Bramley, Le Fèvre, Le Fèvre, and Rao, *J.*, 1959, 1183.